Approximate dissipative Hamiltonian realization and construction of local Lyapunov functions

نویسندگان

  • Yuzhen Wang
  • Daizhan Cheng
  • Shuzhi Sam Ge
چکیده

The key in applying energy-based control approach is to be able to express the system under consideration as a dissipative Hamiltonian system, i.e., to obtain Dissipative Hamiltonian Realization (DHR) for the system. In general, the precise DHR form is hard to obtain for nonlinear dynamic systems. When a precise DHR does not exist for a dynamic system or such a precise realization is difficulty to obtain, it is necessary to consider its approximate realization. This paper investigates approximate DHR and construction of local Lyapunov functions for time-invariant nonlinear systems. It is shown that every nonlinear affine system has an approximate DHR if linearization of the system is controllable. Based on the diagonal normal form of nonlinear dynamic systems, a new algorithm is established for the approximate DHR. Finally, we present the concept of kth degree approximate Lyapunov function, and provide a method to construct such a Lyapunov function. Example studies show that the methodology presented in this paper is very effective. © 2006 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feedback Controller Design for the Four-Tank Process using Dissipative Hamiltonian Realization

This paper considers the problem of stabilizing the quadruple-tank process using an approximate dissipative Hamiltonian realization. The proposed approach consists in canceling by feedback the deviation of the system from a Hamiltonian system. First, we obtain a characteristic one-form for the system by taking the interior product of a non vanishing two-form with respect to the controlled vecto...

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

Geometric integration using discrete gradients

This paper discusses the discrete analogue of the gradient of a function and shows how discrete gradients can be used in the numerical integration of ordinary diieren-tial equations (ODE's). Given an ODE and one or more rst integrals (i.e., constants of the motion) and/or Lyapunov functions, it is shown that the ODE can be rewritten as a `linear-gradient system.' Discrete gradients are used to ...

متن کامل

Pseudo-hamiltonian Realization and Its Application∗

In this paper, the problem of pseudo-Hamiltonian realization of a control system is studied. Several sufficient conditions are obtained. The stability of a dynamic system is investigated via dissipative pseudo-Hamiltonian realization, and the stabilization of a control system is also investigated via feedback dissipative pseudo-Hamiltonian realization. Some relations between the stability (asym...

متن کامل

Comparison between covariant and orthogonal Lyapunov vectors.

Two sets of vectors, covariant Lyapunov vectors (CLVs) and orthogonal Lyapunov vectors (OLVs), are currently used to characterize the linear stability of chaotic systems. A comparison is made to show their similarity and difference, especially with respect to the influence on hydrodynamic Lyapunov modes (HLMs). Our numerical simulations show that in both Hamiltonian and dissipative systems HLMs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Systems & Control Letters

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2007